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Abstract

Recently, long chain of thought (LCoT), Large Language Models (LLMs), have
taken the machine learning world by storm with their breathtaking reasoning
capabilities. However, are the abstract reasoning abilities of these models general
enough for problems of practical importance? Unlike past work, which has focused
mainly on math, coding, and data wrangling, we focus on a historical linguistics-
inspired inductive reasoning problem, formulated as Programming by Examples.
We develop a fully automated pipeline for dynamically generating a benchmark for
this task with controllable difficulty in order to tackle scalability and contamination
issues to which many reasoning benchmarks are subject. Using our pipeline, we
generate a test set with nearly 1k instances that is challenging for all state-of-the-art
reasoning LLMs, with the best model (Claude-3.7-Sonnet) achieving a mere 54%
pass rate, demonstrating that LCoT LLMs still struggle with a class or reasoning
that is ubiquitous in historical linguistics as well as many other domains.

1 Introduction

Students in a introductory historical linguistics course are often given problems where they are
provided sets of etymologically related words from modern languages and asked to infer two things:
(1) a set of reconstructed words from the hypothetical most recent shared ancestor language (⃗i), and
(2) chronologically ordered string rewrite rules (p⃗) for each language to derive the modern words
(o⃗) from the reconstructed words. A good deal of progress has been made towards implementing
(1), which can be seen as a sequence transduction problem, computationally (Ciobanu and Dinu
[2018], Meloni et al. [2021], Kim et al. [2023], Lu et al. [2024a,b]). The logic behind (2), forward
reconstruction, is actually quite straightforward, but it proves challenging for contemporary ML
models, including LLMs. For example, Naik et al. [2024, 2025] attempted to solve this problem for
very simple cases and met with limited success. Their work is the inspiration for this study.

Consider the case of Huishu, a Tangkhulic language of Northeastern India. In this language, Proto-
Tangkhulic1 *1 became u everywhere (p1 : 1 → u) and Proto-Tangkhulic *u became uk at the end of
words (p3 : u# → uk#). Proto-Tangkhulic *uk became uP everywhere (p2 : uk → uP). p1 must have
applied before p3. Otherwise words like *n1 ‘laugh’ would have became nu rather than the attested
nuk in Huishu. Linguists say that p1 FEEDS p3 (creates a context where it can apply). Likewise,
p2 must apply before p3. Otherwise, words like *ru would become ruP in Huishu, rather than the

1Proto-Tangkhulic is the name of the reconstructed ancestor language (or “proto-language”) that is ancestral
to Huishu and its linguistic siblings.
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Figure 1: Structure of the <⃗i, p⃗, o⃗> triples dataset. The relations between the programs in the sequence
are shown by the BFCC DAG, and the simplified BF DAG replaces the counterfactual relations with
a reversed simple link.

attested ruk. Linguists would say that p3 COUNTER-FEEDS p2 (if the order of the two processes
were reversed, Rule p3 would create contexts where Rule p2 could apply, that is, p3 would feed
p2). The reverse of feeding is BLEEDING, in which a p4 destroys a context in which a p5 would
apply. It also has a counterfactual version, COUNTER-BLEEDING (in which p4 would bleed p5 if
it applied first). In the history of a language, if the order of two sound changes matters, one of
these relations holds between them. More generally, since counter-feeding and counter-bleeding
are simply counterfactual versions of feeding and bleeding, the chronologies of sound changes can
be reasoned about by students of historical linguistics simply in terms of the potential feeding and
bleeding relations between them. Since these relations can be defined algorithmically (see §3), the
underlying logic is simple. The forward reconstruction problem simply involves defining the rules
jointly with a multi-step plan consistent with that logic.

This “forward reconstruction” task, which combines inductive reasoning and planning, is a specific
instance of a more general kind of reasoning problem, which has been a topic of discussion since the
early years of artificial intelligence. It is related to all problems where it is necessary to plan a discrete
series of processes p⃗ = [s1 → t1, s2 → t2, . . . , sn → tn] that, when applied in sequence to each
element, will transform the elements of a source vector i⃗ = [i1, i2, . . . , im] into the corresponding
elements of the target vector o⃗ = [o1, o2, . . . , om]. Problems of this type appear in many domains,
from computer science to cooking.

The forward reconstruction formulation of the problem, though, has a number of properties that make
it particularly attractive for benchmarking language models: (1) It can be structured to largely avoid
domain-specific biases, so that it is strictly a reasoning task. (2) The reasoning necessary to complete
the task can be expressed via a very simple pair of logical relations between processes (feeding and
bleeding). (3) The processes themselves can be expressed very simply (e.g., as string rewrite rules).

We present an automated benchmark generation procedure based on this forward reconstruction
class of problems. Models are given a list of input pairs and the corresponding outputs (generated
by applying a randomly sampled program p⃗ to the elements of i⃗ = [i1, i2, . . . , in], yielding outputs
o⃗ = [o1, o2, . . . , on]. The task is to infer a program p̂ that is functionally equivalent to p⃗. Moreover,
our fully automated procedure for generating challenging data allows the benchmark to scale easily
and avoid data leakage. Unlike popular mathematics Balunović et al. [2025], coding Jain et al.
[2024], and reasoning benchmarks Chollet et al. [2024], any contamination in the current version
can be resolved by automatically generating new, harder data without any need for manual curation.
The provided dataset is already challenging, with the most successful model (Claude-3.7-Sonnet)
achieving a pass rate of only 54%.

Based on linguists’ assessment of this problem, we hypothesized that, other things being equal,
problems requiring reasoning about “opaque” rule ordering (counter-feedispng and counter-bleeding)
would be more difficult than those involving “transparent” rule ordering (feeding and bleeding) since
stronger surface evidence is required to infer them. This disparity, though, should diminish as the
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reasoning power of models goes up since the same fundamental search strategies apply to opaque
orders as to transparent orders. Analysis of model outputs support this speculation, but shows that
average Levenshtein distance between i⃗ and o⃗ and the number of programs in p⃗ are better predictors
of difficulty than the types of programs in p⃗.

2 Related Work

Programming By Example Programming by Example (PBE) [Gulwani, 2010] is a well-known
and intuitive paradigm within program synthesis research. It entails inferring programs solely from a
small set of input-output pairs. Early symbolic approaches employ domain-specific languages (DSLs)
and constraint solving: FlashFill uses string-transformation DSLs to automate spreadsheet tasks
[Gulwani, 2011], and Syntax-Guided Synthesis (SyGuS) constrains program search via grammar
specifications [Alur et al., 2013]. DeepCoder [Balog et al., 2017] uses learned function predictions to
guide search, while RobustFill [Devlin et al., 2017] trains sequence-to-sequence models to emit DSL
programs directly. Large Language Models [Chen et al., 2021a, Guo et al., 2024] have demonstrated
few-shot learning capabilities in code generation tasks, but struggle on out-of-distribution examples,
improving only after fine-tuning [Li and Ellis, 2024].

Inducing Context-Sensitive Grammars in LLMs Attempts to induce string-rewrite rules from
data have a long history Gildea and Jurafsky [1995]; discussions of the formal properties of these rules
in linguistics go back farther, including (pivotal to this study) the discovery of feeding and bleeding
relationships between such rules Kiparsky [1968]. More recently, formal language benchmarks
have shown that RNNs can outperform transformers on formal language tasks involving certain
classes of grammars [Butoi et al., 2025]. Morphophonological probes [Borenstein, 2024] reveal
that while models fit the training data, they often default to heuristics, highlighting limitations in
true rule induction. Naik et al. [2024] demonstrate that LLMs can induce low-resource sound laws,
generalizing the method to full context-sensitive program synthesis [Naik et al., 2025]. However,
none of these prior works have proposed provably correct algorithms for detecting feeding and
bleeding relations (a unique contribution of this work).

Benchmarks A range of benchmarks test reasoning and PBE skills. Code-centric suites include
HumanEval and MBPP [Chen et al., 2021a, Austin et al., 2021], while PBE-style tasks appear in
FlashFill datasets [Gulwani, 2011]. Linguistic and reasoning benchmarks such as HotpotQA [Yang
et al., 2018], DROP [Dua et al., 2019], and GSM8K [Cobbe et al., 2021] stress multi-step and
mathematical reasoning. System-2 reasoning is evaluated in BIG-Bench Hard [Suzgun et al., 2022],
where chain-of-thought prompting improves performance significantly. Compositional generalization
splits like SCAN [Lake and Baroni, 2018] and CFQ [Keysers et al., 2020] reveal extrapolation gaps.
Visual PBE in ARC [Chollet, 2019] is a non-language analog to our task. However, our benchmark
is significantly more resistant to leakage, easily scalable, and offers a mechanism to modulate task
difficulty by simple adjustment of the generation parameters. To our knowledge, no benchmark
targets multi-step synthesis of string-rewriting programs; PBEBench fills this niche by unifying PBE
and compositional generalization in a single benchmark.

3 Theoretical Framework

We propose the function feeds(·, ·), which classifies pairs of rules as feeding or not feeding.

feeds(si → ti, sj → tj) =



⊤ ti = ε ∧ |sj | > 1

⊤ ti ∈ Substr(sj) ∧ ti /∈ Substr(si)

⊤ tj ∈ (Substr(ti) \ Substr(si))
⊤ Pref(ti) \ Substr(si) ∩ Suff(sj) ̸= ∅
⊤ Suff(ti) \ Substr(si) ∩ Pref(sj) ̸= ∅
⊥ otherwise

(1)

where Pref(s), Suff(s), and Substr(s) are the multisets of prefixes, suffixes, and substrings of s,
respectively.
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Definition 3.1 (Feeding). Feeding is a relation between pairs of rules pi = si → ti and pj = sj → tj ,
such that ∃s, t ∈ Σ∗ such that s

pi−→ t and t includes a string w that meets the structural description
of pj but is not present in s.

Definition 3.2 (Bleeding). Bleeding is a relation between pairs of rules pi = si → ti and pj =

sj → tj , such that ∃s, t′ ∈ Σ∗ such that si
pi−→ ti and si includes a string w that meets the structural

description of pj but is not present in ti.

Definition 3.3 (Substr). Substr(s) denotes the multiset of substrings of s, counting multiple occu-
rances separately.

Lemma 1: If feeds(pi, pj) then pi feeds pj .

Proof. Given u, v, o, si, ti, sj , tj ∈ Σ∗, si
pi−→ ti, and sj

pj−→ tj there are four types of transforma-
tions of u by applying pi that will yield v such that sj ⊑ v (where ⊑ indicates “is a substring of”).
(1) Deletion. Assume that ti = ε. ∃wx ∈ Σ+ such that wsix

pi−→ xw. If sj = xw then pi feeds
pj . (2) Containment. ti ⊑ sj ∧ ti ̸⊑ si, ∃w, x ∈ Σ+ such that w

pi−→ x ∧ sj ⊑ x ∧ sj ̸⊑ x. (3)
Subsumption. Assume that sj ∈ Substr(ti) \ Substr(si). Given si

pi−→ ti, ti will always contain
instances of sj not present in si, entailing that pi feeds pj . (4) Completion. Assume that ti = uo

and sj = ov (so that o is a suffix of ti and a prefix of sj). siov
pi−→ tiov = uov = usj , entailing that

pi feeds pj (as with ti = ou and sj = vo, mutatis mutandis).

Lemma 2: If ¬feeds(pi, pj) then pi does not feed pj

Proof. Given si, ti, sj , tju ∈ Σ∗, assume for the sake of contradiction two rewrite rules si
pi−→ ti and

sj
t−→j such that pi feeds pj but si, ti, and sj do not satisfy any of the following conditions: Deletion.

si ̸= ε∨ sj ̸= wx∀w, x ∈ Σ+, Containment. t¬ ⊑ sj ∨ ti ⊑ si Subsumption. sj does not occur in
ti except where it occurs in si. Completion. ̸ ∃u, o, v such that(ti = ou∧sj = vo)∨ ti = uo∧sj =
ov. Either ti is a non-empty string neither containing nor being contained by sj and sharing no prefix
or suffix with sj or replacing si with ti derives no instances of sj . The first case must be false, since
the conditions exhaust the transformations that could yield a string containing sj . The second case
must be false, because it contradicts the definition of feeding.

Theorem 3 (Feeding): A rule si → ti feeds a rule sj → tj iff feeds(si → ti, sj → tj)

Proof. Given two rules pi = si → ti and sj → tj , Lemma 1 proves by enumerating cases that each
of the conditions defined for feed(pi, pj) are sufficient for establishing that pi feeds pj . Lemma 2
proves by enumerating cases than pi does not feed pj if none of these conditions are satisfied.

Theorem 4 (Bleeding): A rule pi = si → ti bleeds a rule pj = sj → tj iff feeds(ti → si, sj → tj)

Proof. if ∃u, v ∈ Σ∗, u
ti→si−−−−→ v such that sj ⊑ v ∧ sj ̸⊑ u, it follows that mapping si

pi−→ ti bleeds
pj (where sj

pj−→ tj).

4 Methodology

4.1 Benchmark Generation

We construct our benchmark programmatically by sampling from an input distribution I and program
distribution P and applying the programs p⃗ = {p1, . . . pm} ∈ P on the inputs i⃗ = {i1, . . . in} ∈ I
to obtain the outputs o⃗ = {pm(. . . p1(i1)), . . . pm(. . . p1(in))} (we use o⃗ = p⃗(⃗i) as a notational
shorthand). The inputs, outputs and program sequence <⃗i,p⃗,o⃗> together constitute a single instance
of our benchmark dataset. Our data generation algorithm takes n(= 5) (number of input and output
pairs) and m(= 5) (maximum number of transformation rules or programs) as input parameters.
Additionally we also store information like the relationships or interactions (e.g. BLEEDING, FEEDING,
etc.) between all pairs of programs.
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4.1.1 Input Sampling

For sampling the inputs i⃗ = {i1, . . . in} we sample each input ij , j ∈ {1, . . . n} independently from
each other by first sampling the length of each ij , from a uniform discrete distribution plength = 1

51L
(L = {2, 3, 4, 5, 6}) or |ij | ∼ plength. Then given the length we sample |ij | characters from a uniform
character distribution pchar =

1
141Σ over the restricted set of characters Σ =abcdefghijkxyz).

4.1.2 Program Sampling and Output Generation

We sample a sequence of m string rewrite programs: p⃗ = {p1, . . . pm} of the form pi =
replace(ai, bi) where replace is identical to the Python builtin replace() function for strings
and ai and bi are substrings, where ai is replaced by bi. To sample each program pi we simply
sample ai and bi independently similar to how the inputs are sampled: 1) first sample the lengths
|ai|, |bi| ∼ plength where the length distribution is plength = 1

31L (L = {1, 2, 3}) and 2) sample |ai|
and |bi| characters from the same uniform character distribution pchar =

1
141Σ over the restricted set

of characters Σ =abcdefghijkxyz).

Such a simple sampling procedure might not produce meaningful string rewrite transformations (e.g.,
none of the sampled inputs may be transformed). To ensure meaningful transformations and control
their complexity, we perform careful rejection sampling that analyzes the sampled program sequences
and also analyzes the effect of applying it to the inputs. Any sequences that 1) fail to transform any
inputs or 2) do not meet the desired level of complexity are discarded.

4.1.3 Measuring Instance Complexity

We describe how complex an instance or ⟨⃗i,p⃗,o⃗⟩ triple is based on the types of relations between all
pairs of programs in the program sequence p⃗. An important contribution of our work is provably
correct and automatic classification of the types of relations between any given pair of string rewrite
programs (section 3). For a given pair of programs pi and pj in the program sequence p⃗:

Feeding (F): pi creates substrings that enable pj to apply.
Bleeding (B): pi removes substrings that pj requires.
Counter-Feeding (CF): pi could have fed pj , but pj precedes pi.
Counter-Bleeding (CB): pi could have bled pj , but pj precedes pi.
No Relation: pi and pj can be ordered in any way possible.

We do not store or identify the counterfactuals separately, instead incorporating them by classifying
and storing the relationship between the pair (pi, pj) and (pj , pi), where (pi, pj) indicates a scenario
where pi is applied before pj and (pj , pi) indicates a scenario where pj is applied before pi. We can
also visualize the relationships between the rules using a Directed Acyclic Graph (DAG) as shown
in Figure 1. We show both the actual DAG with all relations and a simplified DAG that indirectly
captures counterfactual relations by reversing them.

4.1.4 Controlling Instance Complexity

To ensure that we can control the distribution of relation types and hence the complexity of the
<⃗i,p⃗,o⃗> triples, we apply rejection sampling as mentioned in 4.1.2. Each example is categorized
into a complexity bucket based on the presence or absence of at least one relation of each type (B,
F, CF, or CB), which can be expressed as a 4-bit vector. Based on these categories, we generate
the data to roughly balance instances of each of the possible 24 = 16 complexity buckets. We start
discarding <⃗i,p⃗,o⃗> triples if any of the complexity buckets is overrepresented. This procedure is
designed to likely yield a dataset balanced both in the complexity and diversity of BFCC relations
between program pairs.

4.2 Program Induction

4.2.1 Prompting

Once we have generated the <⃗i,p⃗,o⃗> using the procedure described in the section above, we evaluate
each model M by prompting them to generate a likely program sequence ˆ⃗p = M (⃗i, o⃗) that can map
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the inputs i⃗ to the outputs o⃗. The LLM is prompted (as shown in section B.2) to generate at most
m(= 5) programs in the predicted sequence ˆ⃗p for each problem (the ground truth program sequence
p⃗ may have ≤ m programs) with the constraints that for each predicted program p̂i must be of the
form replace(ai, bi), and for each substring ai, bi the length |ai| ≤ 3 and |bi| ≤ 3. Additionally,
the substrings ai and bi must only contain characters from the reduced character set Σ. If any of
the constraints are violated, the program p̂i is rejected and replaced by a special “placeholder” or
“identity” program pI which doesn’t transform any inputs (lets all inputs pass as it is). Finally given
the predicted program sequence ˆ⃗p we can obtain a predicted output sequence ˆ⃗o as: ˆ⃗o = ˆ⃗p(⃗i). We
describe the details of extracting the program sequence from the LLM response in section B.1.

5 Experiments

5.1 Benchmark

Using the benchmark generation process described in section 4.1, we generate an evaluation set DT

with 992 instances (|DT | = 992) (<⃗i, p⃗, o⃗> triples). While ideally the rejection sampling described in
section 4.1.4, should yield roughly equal examples for each complexity bucket, we observe that some
programs pi in the program sequence p⃗ do not affect any inputs (even though the program sequence p⃗
as a whole does) we remove these “degenerate” programs pi from the program sequence. This yields
a skewed data distribution with only 10.6% data having at least one BFCC relation and 2.4% data
having two or more relations. While this is less complex than expected, our results show that this is
still challenging for state-of-the-art reasoning LLMs. We give detailed statistics about the generated
benchmark and the feature distribution in A.2.

5.2 Model Selection

We evaluate a representative set of state-of-the-art LLMs (output token budget in brackets):
General-Purpose: Qwen2.5-32B-Instruct Team [2024], Qwen3-32B-Instruct Team [2025], and
Claude-3.5-Sonnet Anthropic [2024], which perform well on diverse coding tasks.
Code-Specific: Codestral-22B AI [2024], trained on 80+ languages, and Qwen2.5Coder-32B-Instruct
Team [2024], with GPT-4o-level coding abilities.
Reasoning-Focused: QwQ-32B, DeepSeek-R1-Distill-Qwen-32B, o3-mini OpenAI [2024], o4-mini
OpenAI [2025], Gemini 2.5 Flash Preview 04-17, and Claude-3.7-Sonnet Anthropic [2025].
MoE: Qwen3-30B-A3B Team [2025] and DeepSeek-R1.
We mention the sampling parameters used to do inference with each of these models in Table 4

5.3 Evaluation Metrics

Since a given set of inputs (⃗i) could be transformed into the outputs (o⃗) by multiple program sequences
p⃗ we utilize metrics based on functional correctness that execute the model generated solution ˆ⃗p on
the inputs and outputs, treating them like test cases. We compare the predicted outputs ˆ⃗o = ˆ⃗p(⃗i) with
the ground truth outputs o⃗ at two levels of granularity: 1) coarse-grained evaluation (pass@1 or exact
match) and 2) fine-grained evaluation (normalized edit similarity). Both metrics do element-wise
comparisons on the strings in the output vectors:
Coarse-grained Metric (Pass@1): This metric is pass@1 from Chen et al. [2021b].

pass@1 =
1

|DT |
∑

o⃗,⃗i∈DT

1 ˆ⃗p(⃗i)=o⃗

Here 1X is an indicator variable which is 1 when X is true and 0 if it is false.
Fine-grained Metric (Edit Sim): This metric is the same as reward@1 used by Naik et al. [2025].

edit_sim =
1

|DT |
∑

o⃗,⃗i∈DT

1− dist(ˆ⃗p(⃗i), o⃗)

dist(⃗i, o⃗)

Here dist denotes the total Levenshtein edit distance summed across the corresponding inputs and
outputs. Additionally we also evaluate the rate at which an LLM generates valid programs (follows
all instructions mentioned in 4.2.1) which we term as the Valid Rate.
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Table 1: Benchmark performance: We compute the pass@1 and edit similarity as the coarse and
fine-grained evaluation, respectively, for each model. ■- indicates mixture-of-experts (or MoE)
model and ★- indicates reasoning model.

Model First Code Block Last Code Block
Pass@1 Edit Sim Valid Rate Pass@1 Edit Sim Valid Rate

Codestral-22B 0.1552 0.1758 0.8351 0.1552 0.1763 0.8354
Qwen2.5-32B-Instruct 0.2006 0.2277 0.8854 0.2016 0.2382 0.8818
Qwen2.5Coder-32B-Instruct 0.2087 0.2362 0.7947 0.2228 0.2536 0.8019
QwQ-32B ★ 0.1865 0.0954 0.8455 0.253 0.1752 0.8552
Qwen3-32B 0.2147 0.2198 0.8748 0.25 0.2587 0.8767
Qwen3-30B-A3B ★■ 0.2913 0.3 0.9093 0.2913 0.3 0.9093
DeepSeek-R1-Distill-Qwen-32B ★ 0.122 0.1137 0.7778 0.126 0.1179 0.7851
DeepSeek-R1 ★■ 0.3044 0.3513 0.9469 0.3065 0.3518 0.9527
o3-mini ★ 0.0464 0.0533 0.7921 0.0474 0.0543 0.801
o4-mini ★ 0.3871 0.4154 0.7387 0.3871 0.4154 0.7387
Gemini 2.5 Flash Preview 04-17 ★ 0.4617 0.5215 0.8148 0.4617 0.5215 0.8148
Claude-3.5-Sonnet 0.2732 0.3416 0.9275 0.2732 0.3416 0.9275
Claude-3.7-Sonnet ★ 0.5111 0.5647 0.8478 0.5403 0.5918 0.8574
Claude-3.7-Sonnet (Thinking Mode) ★ 0.5050 0.5288 0.9135 0.5111 0.5393 0.9168
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Figure 2: Understanding Empirical Instance Difficulty: We visualize the distribution of the
inverted pass rate empirical difficulty or dpass when varying complexity related features like: 1)
Cascade Length, 2) No. of Relations and 3) Input-Output Distance.

5.4 Instance Complexity vs Empirical Instance Difficulty

We investigate how predictive the complexity of an <⃗i, p⃗, o⃗> triple is about the empirical difficulty
d(⃗i, p⃗, o⃗) of the instance. We use the notion of empirical/observed difficulty described in C.1 and
measure instance complexity using features described in C.2. Based on these complexity features, we
perform several analyses on the predictive power of the instance complexity on the empirical instance
difficulty.

6 Results

6.1 Benchmark Performance

Table 1 presents the pass@1, edit_sim, and valid rate for all models described in Section 5.2 for
both the first and last code block. For most models, the last code block yields the best results,
so we extract only those for further analysis. Surprisingly, o3-mini performs the worst, despite
being a strong reasoning model, while Claude-3.7-Sonnet (without reasoning) achieves the best
results. Interestingly, we also notice that Claude-3.7-Sonnet with reasoning (thinking mode) performs
slightly worse, but in general, reasoning models, especially closed-source ones, perform the best.
Some models might generate fewer valid programs overall, but a higher proportion of those may
be functionally correct. For instance, o4-mini has a pass rate of 0.3871 with only 0.7387 valid
rate, whereas DeepSeek-R1 achieves a higher valid rate of 0.9527 but a lower pass rate of 0.3065.
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Table 2: Model-wise instance difficulty breakdown: Logistic Regression analysis of complexity
features with instance difficulty (dpass), for each model. Larger coefficients mean a feature is more
predictive of difficulty, and the standard error reflects the reliability of the estimate. Cells are colored
according to the rank order of the coefficients for the model from smallest to largest: 1st , 2nd ,
3rd , 4th , 5th

Model Name
Feeding Counter-Feeding Counter-Bleeding Cascade Length Input-Output Dist

coef std err coef std err coef std err coef std err coef std err
o3-mini ★ -0.046 0.2 4.7 4.1e+03 3 4e+03 0.047 0.24 0.12 0.2
DeepSeek-R1-Distill-Qwen-32B ★ -0.07 0.22 0.033 0.24 2.9 2.2e+03 0.43 0.29 1.5 0.22
Codestral-22B 0.065 0.18 0.14 0.24 -0.06 0.12 0.29 0.22 1.3 0.19
QwQ-32B ★ -0.053 0.15 -0.032 0.15 3 2.3e+03 0.41 0.19 0.91 0.15
Qwen2.5-32B-Instruct -0.13 0.16 -0.026 0.18 -0.067 0.12 0.8 0.23 0.81 0.14
Qwen2.5Coder-32B-Instruct 0.08 0.15 0.28 0.23 -0.072 0.1 0.34 0.17 0.75 0.13
Qwen3-32B -0.015 0.13 0.18 0.17 0.00016 0.11 0.51 0.15 0.21 0.1
Claude-3.5-Sonnet 0.094 0.13 0.1 0.15 0.078 0.11 0.18 0.15 1.2 0.14
Qwen3-30B-A3B ★■ -0.12 0.12 -0.0035 0.13 0.057 0.11 0.59 0.16 0.85 0.12
DeepSeek-R1 ★■ -0.03 0.11 -0.0087 0.11 0.12 0.11 0.23 0.14 1 0.12
o4-mini ★ 0.17 0.093 0.013 0.084 -0.028 0.077 0.37 0.1 -0.027 0.081
Gemini 2.5 Flash Preview 04-17 ★ -0.036 0.087 0.03 0.087 0.17 0.11 0.55 0.11 0.21 0.082
Claude-3.7-Sonnet ★ 0.02 0.083 0.16 0.089 0.12 0.092 0.61 0.1 -0.19 0.082

Varying thinking tokens for strong open- and closed-source models (Figure 6) shows marginal impact,
confirming the benchmark’s difficulty.

6.2 Understanding Empirical Instance Difficulty:

To investigate whether the <⃗i, p⃗, o⃗> triple instance complexity predicts empirical instance difficulty
(as described in Section 5.4), we first visualize the distribution of inverse pass rate difficulty, dpass,
across different cascade lengths, relation counts, and input-output distances in Figure 2. We observe
a nearly monotonic trend between each complexity feature and empirical difficulty. We also analyze
the correlations between these features and both dpass and inverse edit_sim difficulty dedit in Table 5.
While most features show statistically significant positive correlations with difficulty, the majority
are only weakly or very weakly correlated. Cascade length and input-output distance exhibit the
strongest correlations. We believe this reflects the multi-faceted nature of difficulty, where factors
like relations, cascade length, and input-output distance each contribute, but none alone serves as
a strong predictor. Additionally, the count of bleeding relations shows no statistically significant
correlation. An analysis of relation counts in program sequences after removing the “degenerate
programs” revealed that only 2 out of 992 instances contained one or more bleeding relations. This
highlights a limitation of our current rejection sampling approach.

6.3 Model-wise Instance Difficulty Breakdown

Finally, to understand which complexity features of an <⃗i, p⃗, o⃗> triple each model struggles with, we
perform logistic regression analysis on the inverse pass rate difficulty, dpass. Specifically, we treat
the complexity features like the counts of the F, CB, CF relations, cascade length, and input-output
distance as the independent variables and dpass as the dependent variable. We exclude bleeding here
due to its infrequency as seen in section 6.2. Table 2 depicts the regression coefficients for each
complexity feature per model. We observe that cascade length and input-output distance affect the
log probability of sample difficulty the most, while the relation counts individually have a lower
impact. However, there is a noticeable difference between the transparent relation (feeding) and the
opaque relations (counter-feeding and counter-bleeding). As predicted, weaker models struggle more
with opaque relations compared to better-performing models. For both feeding and counter-feeding
features, reasoning models generally yield coefficients with smaller magnitudes compared to non-
reasoning models. This trend supports the hypothesis that reasoning models are better suited for PBE
tasks and are more robust to the presence of complex relational structures within programs.
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7 Discussion

While reasoning models have been successful at math and coding tasks, this paper addresses a question
posed by earlier researchers Naik et al. [2024, 2025]: Are reasoning models useful for practical
and scientifically important problems like historical linguistics? While Naik et al. [2025] showed
that LLMs can succeed at very simple forward reconstruction tasks, especially when trained on
carefully designed synthetic data, we evaluate the latest advancement in modeling, reasoning models,
on more realistic and complex forward reconstruction problems. These problems feature cascades
with multiple programs (and with multiple relations between programs). This was enabled by three
technical innovations: (1) algorithms for classifying pairs of arbitrary string rewrite programs as
feeding, bleeding, or neutral, (2) a proof of the algorithms’ correctness, and (3) a rejection sampling
method that facilitated the generation of large numbers of problems at scale. This pipeline yielded a
set of nearly 1k instances that even state-of-the-art reasoning LLMs struggle with. Claude-3.7-Sonnet,
the best-performing model, achieves only a 54% pass rate and while it can solve some (33%) complex
problems, it fails to solve nearly 40% of the simple problems.

The benchmark reveals two things: (1) Reasoning models have great potential to solve more realistic
forward reconstruction problems (2) They still struggle with several complexity features (e.g. cascade
length and complex relations between programs) and as consequence are not reliable enough to be
employed in practice for forward reconstruction. Given the kind of benchmark we have developed
(limited though it is by “degenerate programs” and skews in the program distribution), it is now
possible to evaluate how well reasoning models perform on tasks that involve abstract inductive
reasoning and planning. Work like this will blaze the trail towards reasoning models able to induce
programs from pairs of examples without relying on heuristic crutches or domain knowledge.

8 Conclusion & Future Work

Most state-of-the-art LLMs, including the latest reasoning models, struggle with the kind of inductive
reasoning needed in historical linguistics. Our results highlight the need to investigate the cause and
explore better training methods, like verifier-based reinforcement learning, to better align models
with historical linguists’ needs. We also plan to improve our benchmark generation pipeline in terms
of sampling efficiency and improving the rejection sampling constraints to avoid degenerate programs
to generate even more challenging problems.

9 Limitations

Although the benchmark generation process proposed by our study is successful at finding challenging
problems, it does suffer from some key limitations that need to be improved to generate more diverse
and challenging data. Firstly, sampling efficiency is a concern since the rejection sampling process
discards too many data points (roughly 94% of the generated data is discarded), which makes it
harder to apply additional constraints. Additionally, it also produces a lot of “degenerate programs”
especially for bleeding relations which makes the data distribution less challenging and diverse. Other
limitations include the fact that our regression analysis sometimes fails to obtain good estimates for
coefficients (high std. error) and the complexity features like cascade length and input-output distance
are also highly correlated (since a longer cascade with naturally lead to more changes between the
input and output) which means the complexity features aren’t truly independent.
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A Benchmark Details

A.1 Licensing

We create a new benchmark for a completely logical version of the task of forward reconstruction
that requires inductive reasoning and multi-step planning. Our benchmark contains 992 instances
and is released under the CC BY-SA 4.0 license. Additionally, we produce code that allows you to
sample more data, which we also release under the MIT license.

A.2 Benchmark Statistics

Figure 3 shows the distribution of all complexity features in our dataset.

Top left: The B, F, CB, and CF counts reveal that most instances have no relations; 10.6% have one,
and only 2.4% have two or more. This suggests unexpectedly low complexity, likely due to degenerate
programs in the ground truth cascades p⃗. Despite this, even strong models like Claude-3.7-Sonnet
struggle with the data.

Top middle: Feeding is the most common relation type, present in 85 instances. In contrast, counter-
feeding and counter-bleeding are rare, and bleeding occurs in only two cases. This skew likely results
from the removal of degenerate programs, many of which were involved in bleeding relations.

Top right: Cascade lengths are mostly short, with 70.6% of instances having a single-program
ground truth. Still, 25% have two programs, and 5% have more than two, indicating some structural
complexity.

Bottom left: Normalized Levenshtein distance between inputs and outputs is low in most cases:
74.5% are below 0.2, 23.5% fall between 0.2 and 0.4, and only 2% exceed 0.4. No instance exceeds a
distance of 0.6.

Bottom right: Word-level differences show that 46% of examples differ by one word, 31% by two,
17% by three, 5% by four, and 1% by all five, reflecting a range of surface-level complexity.
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Figure 3: Distribution plots for complexity features in our benchmark.

B Method Details

B.1 Program Extraction

Since we evaluate all kinds of LLMs, including reasoning models that may first produce intermediate
outputs and then iteratively refine or improve them by reflection, we account for this by evaluating
both the first and last code block produced by each model.

B.2 Prompt Template

We show the prompt template used for the PBE forward reconstructions task below. This prompt
includes the exact instructions and examples given to all the LLMs for performing this task.
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PBE Forward Reconstruction Prompt

Follow the instructions below to solve the code completion task:
We will provide the input corpus and corresponding output corpus. Each element in the
corpus is a string, and the output is transformed from the corresponding input using an ordered
sequence of “replace” programs. You need to find the correctly constructed and ordered
sequence of “replace” programs to transform the entire input corpus into the output corpus.
Note that the programs can interact with each other in a way that reduces or increases the
number of times they are applied on a given input based on where they are ordered in the
sequence. This makes it very important to apply them in the correct order.
The programs should be written using only the Python replace function. For example,
for a program that replaces all occurrences of “ab” with “bc” it should be written as:
replace(’ab’, ’bc’)
Here is an example of the full task:
### Inputs
["abc", "ebc", "aba"]

### Outputs
["edc", "edc", "aba"]

### Program Sequence
‘‘‘python
["replace(’bc’,’dc’)", "replace(’ad’,’ed’)"]
While generating the program sequence, you need to abide by the following restrictions:

1. Each program must transform exactly {program_length} characters. For example
if program_length = 2 it only allows programs like replace(’bc’,’dc’) since
’bc’ and ’dc’ both have 2 characters but programs such as replace(’abc’,’dc’)
or replace(’bc’,’adc’) are not allowed since input length ’abc’ and the output
length ’adc’ of the respective programs are greater than 2.

2. The maximum number of programs is {program_num}
3. You should only consider the Python “replace” function for specifying programs

(each program is a Python replace function). You cannot use any other Python
modules or functions.

4. Strictly follow the markdown style convention while presenting your final program
sequence, and make sure to enclose it in the ‘‘‘python markdown style code block.

Now, please generate the sequence of programs corresponding to the following input corpus
and output corpus:

Inputs
{inputs_list}

Outputs
{outputs_list}

Program Sequence

B.3 Licenses for Evaluated Models

We list the licenses used for each evaluated open and closed source models in Table 3.

C Experimental Details

C.1 Empirical Difficulty

We define the empirical difficulty as the observed difficulty of an <⃗i, p⃗, o⃗> triple based on the ability
of the set of evaluated models M to come up with a functionally correct solution. Specifically we
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Table 3: Licenses for open and closed source models.

Model License
Qwen2.5-32B-Instruct Apache 2.0
Qwen3-32B-Instruct Apache 2.0
Claude-3.5-Sonnet API (Anthropic EULA)
Codestral-22B Mistral Non-Production License (MNPL)
Qwen2.5Coder-32B-Instruct Apache 2.0
QwQ-32B Apache 2.0
DeepSeek-R1-Distill-Qwen-32B MIT
o3-mini API (OpenAI EULA)
o4-mini API (OpenAI EULA)
Gemini 2.5 Flash Preview 04-17 API (Google EULA)
Claude-3.7-Sonnet API (Anthropic EULA)
Qwen3-30B-A3B Apache 2.0
DeepSeek-R1 MIT

operationalize it by averaging the inverted pass@1 (dpass) or edit_sim (dedit) for a given <⃗i, p⃗, o⃗>
triple across all models M ∈ M as follows (where ˆ⃗p = M (⃗i, o⃗)):

dpass(⃗i, p⃗, o⃗) =
1

|M|
∑

M∈M
1 ˆ⃗p(⃗i) ̸=o⃗

dedit(⃗i, p⃗, o⃗) =
1

|M|
∑

ˆ⃗p∈M(⃗i,o⃗)

dist(ˆ⃗p(⃗i), o⃗)

dist(⃗i, o⃗)

C.2 Instance Complexity

For the instance complexity, we utilize three kinds of features: 1) counts of B, F, CB, CF relations, 2)
number of programs in the ground truth program sequence p⃗, and 3) the normalized Levenshtein edit
distance between the inputs (⃗i) and outputs (o⃗) or dist(⃗i, o⃗). Additionally, we discard the degenerate
programs described in 5.1 before extracting the complexity features.

C.3 Inference/Sampling Parameters

We show the sampling parameters used for all the models in Table 4. The max tokens are the
total output tokens the model can generate (including thinking tokens), while the thinking budget(s)
captures only the chain-of-thought or reasoning related tokens. The top-p is the cumulative probability
cutoff used for nucleus sampling, while the temperature is for controlling the degree of randomness in
the sampling. We report the max tokens and thinking tokens wherever possible based on the providers
(for some models you can only control the total tokens, while for some you can only control thinking
tokens). For some models like Gemini 2.5 Flash Preview, the model has a mode where it first reasons
about how much thinking is required based on how complex it determines the problem to be. We
use this setting for the experiments in Table 1. However, we also do experiments comparing the
effect of varying token budgets (2048, 4096, 8192) for QwQ and Gemini 2.5 Flash Preview, hence
we highlight the default setting used for Table 1 for these models in bold.

D Additional Results
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Figure 4: Model performance breakdown across different structural features.
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Table 4: Sampling parameters used for inference across all models. “Max tokens” refers to the total
number of tokens (output + thinking tokens) for models that support it. "Top-p" controls nucleus
sampling. "Temperature" sets the randomness of token selection. "Thinking budget" is the number of
thinking tokens, applicable only to models that support this feature.

Model Max Tokens Top P Temperature Thinking Budget(s)
Codestral-22B 2048 0.95 0.7 -
Qwen2.5-32B-Instruct 512 0.95 0.7 -
Qwen2.5Coder-32B-Instruct 512 0.95 0.7 -
QwQ-32B - 0.95 0.6 2048, 4096, 8192
Qwen3-32B 2048 0.95 0.7 -
Qwen3-30B-A3B 2048 0.95 0.7 -
DeepSeek-R1-Distill-Qwen-32B 2048 0.95 0.7 2048
DeepSeek-R1 32768 0.95 0.7 dynamic
o3-mini - 0.95 0.7 4096
o4-mini - 0.95 0.7 4096
Gemini 2.5 Flash Preview 04-17 dynamic 0.95 0.7 dynamic, 2048, 4096, 8192
Claude-3.5-Sonnet 2048 0.9 0.5 -
Claude-3.7-Sonnet 2048 0.9 0.5 -
Claude-3.7-Sonnet (Thinking Mode) 12000 - 1 2048

Table 5: Understanding empirical instance difficulty: Spearman Rank (ρ) and Kendall Tau (τ )
correlation between the instance difficulty (dpass) and (dedit) and all the complexity features.
Instance
Difficulty

Bleeding Feeding Counter-Bleeding Counter-Feeding Cascade Length Input-Output Dist
r p value r p value r p value r p value r p value r p value

dpass (ρ) 0.06 p >0.05 0.2 p <0.0001 0.09 p <0.005 0.17 p <0.0001 0.39 p <0.0001 0.33 p <0.0001
dpass (τ ) 0.05 p >0.05 0.18 p <0.0001 0.08 p <0.005 0.15 p <0.0001 0.33 p <0.0001 0.24 p <0.0001
dedit (ρ) 0.02 p >0.05 0.13 p <0.0001 0.11 p <0.0005 0.1 p <0.005 0.14 p <0.0001 0.17 p <0.0001
dedit (τ ) 0.02 p >0.05 0.11 p <0.0001 0.09 p <0.0005 0.08 p <0.005 0.12 p <0.0001 0.12 p <0.0001
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Figure 5: Superimposed performance bars for Claude 3.7 Sonnet.
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Figure 6: Evaluation Metrics comparison between QwQ-32B and Gemini 2.5 Flash Preview 04-17
across variable thinking budgets (number of tokens)
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